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Safran et al. pointed out that the contribution of interaction between two species within a mono-
layer can be described by the spontaneous curvature of the monolayer which plays a crucial role for
the stability of the mixed surfactant vesicles [S. Safran et al.,, Phys. Rev. A 43,1071 (1991)]. In this
paper, reconsidering the relation between the spontaneous curvature and mismatching interactions
between two species, we find a case in which this interaction cannot be represented completely by
spontaneous curvature, even though the spontaneous curvature accounts for part of its contributions.
We analyze the effects of intermonolayer interaction as well as that of intramonolayer interaction
on the stability of bilayer vesicles. Our results on the ranges of parameters for stable vesicles give
a clue to estimate the interaction strength from the compositional distribution analysis of stable

mixed surfactant vesicles.

PACS number(s): 87.10.+e, 83.70.Hq, 68.10.Et, 81.30.Dz

I. INTRODUCTION

Several years ago, using single-tailed cationic and an-
ionic surfactants, Kaler et al. [1] found a way to produce
spontaneous stable vesicles whose size distributions can
be well controlled. They concluded that the vesicle for-
mation comes from the production of loose anion-cation
surfactant pairs that acted as pseudo double-tailed zwit-
terionic surfactants.

Lately, Safran et al. [2] proposed a phenomenological
theory for spontaneous vesicles formation in surfactant
mixtures. In their theory, the total free energy of the
mixed vesicles consists of three parts: the curvature en-
ergy f., the entropy part of mixing f,,,, and fi—the direct
interactions between the two species of surfactants within
the same monolayer with the contribution to spontaneous
curvature excluded. In the large rigidity and low temper-
ature limit, they neglected the last two parts f,, and f;,
and analyzed the phase behavior of the spherical vesicles
by assuming that the properties of bilayer are given by
adding that of two monolayers together.

In this paper, we discuss the condition for the valid-
ity of the approximation made in Ref. [2] in which f; is
neglected. We find that, when f; is retained, the sponta-
neous curvatures of two monolayers are no longer equal.
As there are strong interactions (which are important
in the combination of bilayer) between two monolayers,
we study their effects on the spontaneous curvatures and
stability of bilayer vesicles. Our results for the phase
diagram imply a possible method of estimating the in-
teraction strength from the compositional distribution
analysis of stable vesicles.

This manuscript is organized as follows. In Sec. II, we
review briefly the theory of Safran et al. [2] and discuss
the relation between spontaneous curvature and the mis-
matching interaction within monolayer. In Sec. III, we
introduce interactions between two monolayers into the
total free energy of mixed surfactant vesicles. Their ef-
fects on the spontaneous curvature and stability of mixed
surfactant vesicles are studied. We find that, for certain
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range of parameters, our phase diagrams are different
from that in Ref. [2]. We conclude our paper in Sec. IV
with a summary of our results.

II. PHENOMENOLOGICAL THEORY
FOR MIXED SURFACTANT VESICLES

We denote two kinds of surfactants as “1” and “2”,
and define the volume fraction of surfactant “2” in in-
ner and outer layers as ; and ,, respectively. The
compositional difference between these two layers is ¢ =
(Yo — ¥:)/2, and the average ratio of composition ¥ =
(Yo + ¥:)/2 is set fized. The spontaneous curvatures of
the inner and the outer layers are denoted by c¢; and c,.
The total curvature energy per unit area of the midplane
for the spherical vesicles is [2]

fc =2K[(c+co)2+(0_ci)2] ) (1)

where c is the actual curvature of the inner layer and K
is the rigid modulus of the monolayers. Expanding c,
and ¢; in terms of ¢ up to the second order, we have

co:é(d}) _a(¢)¢_ﬁ(¢)¢2 ) (2)
ci =2(¥) + a(¥)e — B(¥)¢* .

Since our discussions are in low temperature limit, the
entropy part of free energy f,, from mixing is neglected
hereafter.

Excluding the phenomenological spontaneous curva-
ture energy, the remainder of the direct interactions be-
tween two species within each monolayer is of the form

fi==2J9p(1-9) +2J¢%, 3)

where J represent the strength of interaction. We have
used the assumption that the properties of the bilayer are
given by summation of two monolayers, as in Ref. [2].
Safran et al. [2] minimized the total free energy f =
fe + fm + fi with respect to the curvature ¢ and got
the curvature ¢* = a¢ which minimizes the free energy
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for given ¢. In the limit of large rigidity, they neglected
the contributions from f,, and f;, and obtained ¢* =
+(¢/B)}/? (so ¢* = a¢*). In this approximation, the
spontaneous curvatures for two monolayers have the same
magnitude, but opposite signs.

Generally speaking, in the low temperature limit, the
free energy of any one of the monolayers (e.g., inner layer)
is a function of v, the compositional difference ¢ and the
curvature c, i.e., f*(¢,,c). For small ¢, we may expand
fi®(¢,1,c) around ¢ = 0 (to the second order of c):

™ (¢,9,¢) = f™(¢,9,c = 0)

afin 1 azfin 2
+ dc |, et 2 dc2 =0 (4)
Denoting
1 BZfin 1 afin
— = - - 7 3 5
2 9c? | _, 2K, 4K Oc |._, ¢ ®)
we have

fi“(qﬁ,z/),c) =2K(c—c;)* + fi"(¢,1/;,c =0)-2Kc?.
(6)

Comparing the free energy of this form with that Safran
et al. used for monolayer, we find that the first term in
Eq. (6) gives the curvature energy, and by definition, the
last two terms, contribute to the remain part of direct
interactions between two species excluding the sponta-
neous curvature energy. This part equals f; of Eq. (3).

Now, we discuss the relation between spontaneous cur-
vature of monolayer and mismatching interactions be-
tween two species within the monolayer. In our logic,
the spontaneous curvature results from the mismatching
of two species. But whether the total mismatching inter-
action energy between the two species can be represented
by the phenomenological spontaneous curvature energy
is worth studying.

It is clear that, in case the mismatching interaction
energy can almost be included in the spontaneous curva-
ture energy, the last two terms in Eq. (6) will cancel each
other to give a very small residue. So the energy f; of
Eq. (3) will be very small and can be neglected compared
with the bending energy. This corresponds to the case
Safran et al. discussed [2].

However, there is another case in which the total in-
teraction energy between two species cannot be described
totally by the spontaneous curvature energy, even though
the spontaneous curvature results from this mismatching
interaction. In this case, the contribution of the last two
terms in Eq. (6) is not very small, and f; in Eq. (3) should
not be neglected for its effect on the stability of vesicles.
In general, we should retain f; in the discussion on vesicle
stability.

As it is well-known, a phenomenological formula for
the free energy of monolayer usually consists of two parts:
bending energy and tensile energy. The last two terms
in Eq. (6) may be identified as the tensile energy. It is
natural that the surface tension ) is a function of ¥ and
¢ for mixed surfactant system. When the contribution of
tensile energy can be neglected compared to bending en-
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ergy, total free energy of vesicles is dominated by bending
energy. This is the case discussed by Safran et al. For
the second case the tensile energy is comparable with the
bending energy.

III. INTERACTIONS
BETWEEN TWO MONOLAYERS
AND PHASE DIAGRAMS

Until now, we have used the assumption that the prop-
erties of bilayer is merely the summation of two monolay-
ers. However, a more complete theory should include the
interaction between two monolayers which also depends
on ¢ and v, and plays important role in the formation
of bilayer structure of vesicles. In addition, if the chain
lengths of two species are unequal, there will be inter-
penetrations of surfactant chains between two monolay-
ers. These interpenetrations affect the distribution and
packing of surfactants, and even the stability of vesicles.

Actually, it is not difficult to write out the phenomeno-
logical terms describing the intermonolayer interactions
for mixed surfactant vesicles:

foi = (2Js = 1 — J3)* — (2J3 — Jy = Jp)¢?
—2(Js = Jo)¥ + Jz (7)

where, J1, J2, and J3 are respectively proportional to the
strength of interactions between surfactants “2-2”, “1-1”,
“1-2” of the inner and outer layers. We have assumed
that the strengths of interactions between “1”of inner
and “2” of outer layers are the same as that between “2”
of inner and “1” of outer layers.

The total free energy now becomes f = f. + fi + fui-
Minimizing it with respect to the curvature c first, we
find ¢* = a¢. Inserting this expression back to f and
omitting terms not involving ¢, we get

f =2K(—3e* +26°¢") , (8)

J+2J3—J;—J,

€=88c— e

Hereafter we define

J+2J3—-J1 — Jp

U= %

to simplify our expressions.

From Eq. (8), we obtain the range of 3 in which the
mixed vesicles are stable with respect to plain lamellar
in the limit of low temperature. When U > —2 (in the
same unit of Ref. [2]), the range of 8 for stable vesicles
has similar features to that of Ref. [2]. But when U < -2,
the phase diagrams are different. In Fig. 1, we give our
results for U = —4. We find that, for negative U and
large |U|, the stable vesicles will have small ¥ or (1 —1).
Accordingly, the ratios of two compositions within stable
mixed vesicles have a large difference.

The range of U for stable vesicles is also constrained
(Fig. 2). For positive and large U, 9 will be about 0.5
for stable spherical vesicles, and the ratios of two com-
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FIG. 1. B (see text) versus relative composition 3. The
shaded area represents range of 3 and v where vesicles are
stable. The v is close to 0 or 1 for stable vesicles.

positions within stable mixed vesicles are almost equal.
Again, we find that for negative U with large absolute
value, the vesicles with small ¥ or small (1 — ¢) are sta-
ble. This is a very interesting result. It implies that
one may estimate U from the compositional distribution
analysis of stable spherical vesicles.

Now let us have a discussion about the meaning of J’s
in U. For neutral surfactants, interactions within mono-
layer comnsist of steric interaction between headgroups,
steric interaction between chains, and hydrophobic at-
tractions along interface of monolayer [3]. For anionic-
cationic surfactant mixtures, there is additional electric
interaction between headgroups. All of these interactions
contribute to J.

Hydrophobic attractive forces between monolayers
along the normal directions of monolayers balanced by
the steric interactions join two monolayers together into
a bilayer. There is also electric interaction between head-
groups of two monolayers for the ionic surfactants. These
interactions are the origin of J;, J2, and J; in U.

It is pointed out that there is evidence of dynamic ion
pairing of ionic single-tailed surfactants forming pseudo-
double-tailed zwitterionic surfactant. However, this bid-
ing of pairing is not very tight, otherwise, they will be-
have as single-composition double-tailed surfactants and
will not form unilamellar vesicles spontaneously [4].

The asymmetry of compositions and their packing are
necessary for the interpretation of the spontaneous for-
mation of mixed surfactant vesicles (which are only ob-
served in surfactant mixtures [4]). Any compositional
asymmetry of aforementioned interactions will contribute
to the spontaneous curvature as well as to the stability
of mixed surfactant vesicles.

IV. SUMMARY

We have discussed for two cases the relation between
the spontaneous curvature of monolayer and mismatch-
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FIG. 2. U (see text) versus relative composition 3. The
shaded area represents range of U and 1 where vesicles are
stable.

ing interactions of two species. In one case, which corre-
sponds to that discussed by Safran et al., the total mis-
matching energy can be represented by the phenomeno-
logical spontaneous curvature energy, so f; in Eq. (3) can
be neglected. In the other case, the spontaneous curva-
ture still results from the mismatching interaction, but
the spontaneous curvature energy is no longer the main
part of the total mismatching energy, so f; should not be
neglected in this situation.

Furthermore, we considered the interaction between
monolayers, which is also crucial for the stability of bi-
layer vesicles. In the low temperature limit, we discuss
the constraints on 3, ¥, and U from the conditions that
vesicles are stable. The range of 3 is different from that
in Ref. [2] for U < —2. In addition, we find that U may
be estimated by the compositional distribution analysis
of stable spherical vesicles.

Even in the model used here, we have only discussed
the stability of vesicles in comparison with the plain
lamellar structures. There are still some issues unset-
tled, such as the surprising stability of anionic-cationic
mixed vesicles against aggregation [4] and the stability
of vesicles compared with multilamellar liposomes in the
mixtures of anionic and cationic surfactants. Settlement
of these issues relies on more general theory including in-
teractions between vesicles and interactions between bi-
layers of multilamellar liposomes.
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